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Abstract
We study spin transport in the insulating antiferromagnet with S = 1 in one dimension. The
spin conductivity is calculated, at zero temperature, using a modified spin wave theory and the
Kubo formalism, within the ladder approximation. Two-magnon processes provide the
dominant contribution to the spin conductivity. At finite temperature, free magnons are
activated, and turn the system into a perfect spin conductor, i.e., the spin conductivity has a
Drude form with infinite scattering time.

1. Introduction

As is well known, the low-temperature properties of the one-
dimensional quantum antiferromagnet (1DAF) depend on the
spin value S [1]. For integer spin values, the model exhibits
a non-magnetic singlet ground state well separated from the
first excited triplet state by an energy gap m, whereas the
excitation spectrum is expected to be gapless for half-integer
spin values. The integer spin case has been studied mainly
using the mapping to the one-dimensional quantum O(3) non-
linear sigma model (NLSM) [2]. The NLSM is a highly
nontrivial field theory and it is often approximated using other
models.

The standard spin wave formalism is unsuitable for
treating the 1DAF due to the divergence of quantum
fluctuations. However, a modified spin wave theory (MSW)
for the low-dimensional Heisenberg antiferromagnet, closely
related to the Schwinger boson formalism of Arovas and
Auerbach [3], was formulated by Takahashi [4] under the
assumption of zero sublattice magnetization. With this
constraint the number of spin waves in a one-dimensional
isotropic system does not diverge as it does in the usual spin
wave treatment. Results obtained using the MSW formalism
agree with those obtained with the NLSM. The dynamics of
the 1DAF with spin S = 1 was studied by Pires and Gouvea
using the MSW technique [5].

Although the thermodynamics of the 1DAF model is now
well understood, there are still open questions regarding spin
transport. Sachdev and Damle [6] showed that a semiclassical
analysis of the 1D NLSM gives a diffusive behavior. However,
Fujimoto and Kawakami [7] studying the same model, using
the Bethe ansatz method, found that the spin transport at

finite temperatures is ballistic and therefore there is no spin
diffusion in this system. Buragohain and Sachdev [8] criticized
the approach used by Fujimoto and Kawakami, claiming
that the calculation of the Drude weight from the finite size
spectrum might not give the correct thermodynamic limit at
finite temperatures. Fujimoto, in a subsequent paper [9],
studied the spin–spin correlation function using the 1/N
expansion method for the NLSM. He found that a cancelation
of the self-energy corrections with vertex corrections of the
Green function leads to a ballistic behavior of the spin–spin
correlation function. He concluded that the quasiparticle
damping did not give rise to a diffusive behavior, if one
takes into account the vertex corrections which preserve the
current conservation law. He attributed the spin diffusion
observed experimentally [10] in the S = 1 1DAF AgVP2S6

to spin–phonon interactions. The result of Fujimoto was
confirmed by Konik [11], who also found a ballistic behavior
for the 1D NLSM using a truncated ‘form factor’ expansion.
Konik found as well no additional regular contribution to the
spin conductivity near ω = 0—only the Drude term was
present. He obtained, however, a regular contribution for
ω > 2m, even in the zero-temperature limit. He pointed out
that it was the integrability of the NLSM and the existence
of an infinite number of conserved quantities that leads to
a finite Drude weight. But the subject is still controversial.
Karadamoglou and Zotos [12] using the exact diagonalization
and microcanonical Lanczos method obtained a diffusive,
rather than ballistic behavior, in the high-temperature limit of
the S = 1 1DAF.

The study of spin transport is also important for
understanding the relaxation and non-equilibrium phenomena
in strongly correlated electron systems [13]. Practical
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applications in spintronics have also been proposed [14]. In
the present paper we extend early results [15] and consider the
effect of magnon–magnon interactions. We calculate the spin
conductivity for the 1DAF using the MSW approach and the
Kubo formula for transport.

2. Spin conductivity

Spin currents flow in response to a magnetic field gradient.
Therefore, we will add to the Hamiltonian

H = J
∑

n

�Sn · �Sn+1, (1)

an external space and time dependent magnetic field B(x, t)
applied along the z-direction. We assume a magnetic field
gradient along the x direction.

From the continuity equation

jn+1 − jn = −∂Sz
n

∂ t
, (2)

written for the lattice, and Heisenberg’s equation of motion
Ṡz

n = i[H, Sz
n], we obtain

jx(l) = iJ

2
(S+

l S−
l+1 − S−

l S+
l+1), (3)

where l + 1 is the nearest-neighbor site of site l in the positive
x direction. The spin current response to an external magnetic
field gradient is given by [16]

〈 j (q, ω)〉 = χ j S(q, ω)h(q, ω), (4)

where h = gμB B , and the dynamic susceptibility is

χ j S(q, ω) = i

N

∫ ∞

0
dt eiωt 〈[ j (q, t), Sz(−q, 0)]〉. (5)

From equations (2)–(4) we obtain

〈 j (�q, ω)〉 = K (q, ω)

ω
qxh(�q, ω), (6)

where the current response function is defined by

K (q, ω) = 〈K 〉 + �(q, ω), (7)

with

〈K 〉 = J

h̄ N

∑

n

〈S+
n S−

n+a + S−
n S+

n+a〉, (8)

and

�(q, ω) = i

N

∫ ∞

0
dt eiωt 〈[ j (q, t), j (−q, 0)]〉. (9)

The current–current correlation function �(q, ω + i0+) is
analytic in the upper half of the complex ω-plane and the
extrapolation along the imaginary axis can be reliably done.

In the Kubo formalism [17], the frequency dependent spin
conductivity σ(ω) is given by

σ(ω) = (gμB)2 lim
q→0

K (q, ω)

i(ω + i0+)
. (10)

The real part of the conductivity can be written as

σ ′(ω) = σ0(ω) + σ reg(ω), (11)

where σ0(ω) = Dδ(ω), with

D = −π lim
ω→0,q→0

K ′(q, ω). (12)

The regular part is given by

σ reg(ω) = 1

ω
P(ω), (13)

where
P(ω) = lim

q→0
�′′(q, ω). (14)

The regular part, σ reg(ω), is the continuum contribution to the
conductivity. The delta function term is the contribution of
thermally excited particles that propagate ballistically without
any collisions with other particles. Therefore, a finite Drude
weight implies ballistic transport, i.e. the system is a perfect
conductor with an infinite static conductivity. The Drude
weight is a probe for transport properties; it measures the
ability of the system to sustain a current without dissipation.

We can also define a spin stiffness by [18]

ρ = lim
q→0,ω→0

K (q, ω). (15)

The spin stiffness corresponds to a time independent spiral
twist of the spins in the limit that the wavelength of the spiral
becomes infinitely large. If the system has long-range spin
correlations, ρ is finite; otherwise it is zero [18].

Using the continuity equation we find [19, 20]

P(ω) = lim
q→0

ω

2
(1 − e−βω)

S(q, ω)

q2
, (16)

where S(q, ω) is the dynamic structure factor for the spin–spin
correlation function. Let us suppose that we have diffusion. In
this case we can write [19]

S(q, ω) = 2χω

1 − e−βω

Dq2

(Dq2)2 + ω2
, (17)

where D is the spin diffusion coefficient and χ is the uniform
susceptibility. From equations (12), (16) and (17) and using
the fact that ρ is zero for the 1DAF, we can show that spin
diffusion implies the vanishing of the Drude weight [19].

3. Modified spin wave theory

In the MSW formalism the constraint of zero sublattice
magnetization is introduced in the Hamiltonian through a
Lagrangian multiplier. The diagonalization of the quadratic
part leads to a spin wave energy that has a gap, in agreement
with the Haldane conjecture. The results of the MSW and
Schwinger boson methods are qualitatively similar and the
choice of one method over the other is largely a question of
taste [21]. Following [4], we define boson operators in each
sublattice according to

S+
n = √

2San, S−
n = √

2Sa+
n , (18)
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for the spin up sublattice, and by

S+
m = √

2Sb+
m , S−

m = √
2Sbm, (19)

for the spin down sublattice. Taking the Fourier transform
and following [4], we introduce the following Bogoliubov
transformation:

ak = ukαk + vkβ
+
k , bk = ukβk + vkα

+
k , (20)

where the coefficients uk and vk are given by

uk =
√

λ + ωk

2ωk
, vk =

√
λ − ωk

2ωk
, (21)

with
ωk = λ

√
1 − η2 cos2 k. (22)

The temperature dependent parameters λ and η are obtained by
solving simultaneously the self-consistent equations

S + 1

2
= 1

N

∑

k

1

2(1 − η2 cos2 k)1/2

× coth

[
λ

2T
(1 − η2 cos2 k)1/2

]
, (23)

η2λ

2J
= 1

N

∑

k

η2γ 2
k

2(1 − η2 cos2 k)1/2

× coth

[
λ

2T
(1 − η2 cos2 k)1/2

]
. (24)

The temperature dependence of λ and η is discussed in [4].

4. Green function formalism

4.1. Basic theory

From equations (3), (19) and (20) the spin current j0 =∑
l jx(l) can be written as

j0 = λ2

2

∑

k

sin k

ωk
[η cos k(α+

k αk + β+
k βk) − (α+

k β+
k + αkβk)].

(25)
We have to add to j0 a term coming from the four-magnon
term in the Hamiltonian. All the details of the calculations are
presented in [16, 22–24]. In those references the calculations
were performed in 3D and 2D using the standard spin wave
procedure, but the details are the same as for the one used for
the MSW. We refer the reader to those references and present
here only the final result. We remark that only multimagnon
excitations with vanishing total momentum contribute to the
spin conductivity.

Following the cited references, we start with the spin
current Green function defined by

G j (t) ≡ − i

h̄ N
〈0|T j (t) j (0)|0〉, (26)

where T is the time ordering operator and |0〉 is the ground
state. The magnon propagators are

Gαα(k, t) = −i〈0|Tαk(t)α
+
k (0)|0〉,

Gββ(k, t) = −i〈0|Tβ+
k (t)βk(0)|0〉, (27)

while the Fourier-transformed propagators for the free
magnons have the formula

G0
αα(k, ω) = 1

ω − ωk + iδ
, G0

ββ(k, ω) = −1

ω + ωk − iδ
.

(28)
After a straightforward calculation we obtain

G j (ω) = λ4

4

∑

k,k′

sin k sin k ′

ωkωk′
�kk′ (ω), (29)

where

�kk′ (t) = −i〈0|Tαk(t)βk(t)α
+
k′ (0)β+

k′ (0)|0〉, (30)

is the two-magnon Green function. From now on the
calculation is very long, but all the steps can be found
in [16, 22]. The final result is

�kk′ (ω) = i
∫ +∞

−∞
dω′

2π
Gαα(k, ω + ω′)Gββ(k, ω′)�kk′ (ω, ω′),

(31)
where �kk′ (ω, ω′) is the vertex function.

4.2. Noninteracting magnons

In a first step we neglect magnon–magnon interaction. In this
case the calculations can be performed easily. This amounts to
the replacement of the one-particle Green function, G → G0,
and we obtain

G j (ω) = λ4

4

∑

k

sin2 k

ω2
k

�kk(ω), (32)

where

�kk(ω) = i
∫ +∞

−∞
dω′

2π
G0

αα(k, ω + ω′)G0
ββ(k, ω′). (33)

The temperature dependent Green function, in the
Matsubara method, is obtained from the zero-temperature
Green function by replacing ω by iωn , where ωn = 2πnT ,
and

1

2π

∫
→ iT

∑

n

.

After performing the sum using
∑

n (iωn − x)−1 = (ex/T −
1)−1/T , a simple analytical continuation yields the frequency
and temperature dependent Green function [17]. The final
result is

�(q = 0, ω) = G j (ω) = λ4

8

∫
dk

2π

sin2 k[1 + 2n(k)]
ω2

k

× 1

ω − 2ωk
, (34)

where n(k) = (eβωk − 1)−1. The regular part of the
conductivity is therefore given by

σ reg(ω) = (gμB)2 �′′(q = 0, ω)

ω
= (gμB)2 πλ4

16

×
∫

dk

2π

[1 + 2n(k)] sin2 k

ω3
k

δ(ω − 2ωk). (35)
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Figure 1. Regular part of the spin conductivity, for the
noninteracting magnons, for three values of temperatures.

(This figure is in colour only in the electronic version)

The delta function δ(ω − 2ωk) accounts for two-magnon
excitations at energy ωk . We can solve the integral (35) exactly
and obtain

σ reg(ω) = (gμB)2λ2

16η2
[1 + 2n(ω/2)]θ(|ω| − 2m)

× 1

ω2

√
ω2 − 4m2

4λ2 − ω2
, (36)

where m = λ
√

1 − η2 is the gap. The regular part of the
conductivity vanishes below a threshold frequency for ω < ωc ,
where ωc = 2m is the sum of the excitation gaps for an
α magnon and a β magnon excitation. Above the threshold
frequency α–β magnons can be created, and σ reg(ω) is finite.
This means that propagating modes can be excited. σ reg(ω)

diverges at the maximum two-magnon energy (ω = 2λ). This
singularity will be rounded out when higher-order corrections
are included.

For T 
 ω we find

σ reg(ω) = (gμB)2λ2

4η2

T

ω3

√
ω2 − 4m2

4λ2 − ω2
. (37)

In figure 1 we show σ reg(ω) for the noninteracting model for
three values of temperatures.

4.3. Drude weight

The Drude weight can be calculated using equation (12). We
find

D = η2π

8T

∫
dk

2π

γ 2
k sin2 kx

ω2
k sinh2(ωk/2T )

. (38)

For small values of the temperature we obtain

D ∝ √
T e−m/T . (39)

For T 
 ωk we find D ∝ T . It may appear peculiar that the
1DAF which is insulating at T = 0 turns into a perfect spin
conductor at finite temperature. There are hidden conservation
laws that make it impossible to relax the current to zero and
thus the conductivity is infinite [25].

Figure 2. Regular part of the spin conductivity, at T = 0, within the
ladder approximation.

4.4. Ladder approximation

Treating the interactions within a ladder approximation for
T = 0 [16] we find

σ reg(ω) = − (gμB)2λ2

16η2ω̃

× Im
r (2) − λ−1(r (1)r (1) − r (0)r (2))

1 + λ−1(r (0) + r (2)) − λ−2(r (1)r (1) − r (0)r (2))
,

(40)

where

r (m) = 2

π

∫ π

0
dk

sin2 k

εm
k

1

ω̃ − 2εk
, (41)

and εk = √
1 − η2 cos2 q, ω̃ = ω/λ. The imaginary part of

r (m) can be calculated analytically. We find

Im r (m)(ω̃) = 1

η2

(
ω̃

2

)1−m
√

4(η2 − 1) + ω̃2

4 − ω̃2
. (42)

In figure 2 we show σ̃ reg(ω̃) as a function of ω̃ within the ladder
approximation. The magnon–magnon interaction removes the
divergence of the noninteracting theory at ω = 2λ. The
behavior of σ̃ reg(ω̃) shown in figure 2 agrees qualitatively with
the behavior of the conductivity of interacting fermions in a
one-dimensional lattice as discussed by Giamarchi [25].

5. Conclusions

We have studied spin transport in the quantum one-dimensional
antiferromagnet with S = 1. The spin conductivity
was calculated, at zero temperature, using a modified spin
wave theory and the Kubo formalism, within the ladder
approximation. We have found a nonzero Drude weight at
finite temperatures, indicating ballistic transport, in agreement
with Fujimoto [9] and Konik [11]. As pointed out
by Sentef [16], the spin conductivity can be determined
experimentally by means of measurements of magnetization
currents and appears experimentally feasible.
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